Inference of Chemical Reaction Networks Using Hybrid S-system Models
نویسندگان
چکیده
This article demonstrates, using simulations, the potential of the S-system formalism for the inference of unknown chemical reaction networks from simple experimental data, such as that typically obtained from laboratory scale reaction vessels. Virtually no prior knowledge of the products and reactants is assumed. S-systems are a power law formalism for the canonical approximate representation of dynamic non-linear systems. This formalism has the useful property that the structure of a network is dictated only by the values of the power law parameters. This means that network inference problems (e.g. inference of the topology of a chemical reaction network) can be recast as parameter estimation problems. The use of S-systems for network inference from data has been reported in a number of biological fields, including metabolic pathway analysis and the inference of gene regulatory networks. Here, the methodology is adapted for use as a hybrid modelling tool to facilitate the reverse engineering of chemical reaction networks using time series concentration data from fed-batch reactor experiments. The principle of the approach is demonstrated with noisy simulated data from fed-batch reactor experiments using a hypothetical reaction network comprising 5 chemical species involved in 4 parallel reactions. A co-evolutionary algorithm is employed to evolve the structure and the parameter values of the S-system equations concurrently. The S-system equations are then interpreted in order to construct a network diagram that accurately reflects the underlying chemical reaction network.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملElectricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کامل